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Critical dynamics of randomly assembled and diluted threshold networks
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The dynamical behavior of a class of randomly assembled networks of binary threshold units subject to
random deletion of connections is studied based on the annealed approximation suitable in the thermodynamic
limit. The dynamical phase diagram is constructed for several forms of the probability density distribution of
nonvanishing connection strengths. The family of power-law distribution functions py(x)=(1-a)/(2[x|%) is
found to play a special role in expanding the domain of stable, ordered dynamics at the expense of the
disordered, “chaotic” phase. Relationships with other recent studies of the dynamics of complex networks
allowing for variable in-degree of the units are explored. The relevance of the pruning of network connections
to neural modeling and developmental neurobiology is discussed.
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I. INTRODUCTION

Theoretical and intuitive understanding of the topological
properties and dynamical behavior of complex networks has
assumed increasing importance over the last several decades,
with the growing recognition of the ubiquitous role of these
systems in the natural and social sciences. Among other
milestones, one can point to the neural-network models in-
troduced and analyzed by McCulloch and Pitts [1], Caian-
iello [2], and Hopfield [3], to Kauffman’s seminal Boolean
model of gene-regulation networks [4,5], to the small-world
networks of Watts and Strogatz [6], and to the scale-free
networks studied by Barabdshi and Albert [7,8].

The present contribution extends the analysis of the dy-
namics of randomly assembled and diluted threshold net-
works begun in the 1980s [9-13]. This early work estab-
lished the existence of two dynamical phases, ordered (or
“frozen”) and disordered (or “chaotic”), and implemented a
prescription for determining the critical boundary between
the phases. In the frozen phase, a dynamical system that can
be adequately modeled by such a network would exhibit
stable operation, robust against disturbance, but it would be
subject to damage spreading and failure in the chaotic phase.
(Alternatively, the chaotic phase may have an important role
in giving access to more flexible behavior.) Interest in this
criticality problem has revived in recent years, for both ran-
dom threshold network models [22,23] and random Boolean
nets [24]. Our specific aim in the present work is to explore
the extent to which the stable regime can be expanded by
adjusting the choice of probability density distribution for
the strengths of connections in a diluted random threshold
network. Among the choices examined, the power-law (or
“scale-free”) distribution is found to have particularly inter-
esting properties.

In Sec. II, a general class of randomly assembled net-
works of binary processing units is defined in terms of the
topology of connections among the units and a dynamical
update rule. Section III continues with statistical specifica-
tion of the network models to be studied in terms of prob-
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ability distributions for the number of connections to a given
unit and for the strengths of those connections. Known re-
sults [11] for the two-phase dynamical behavior of such
models as determined within the annealed approximation
[14—-17] are reviewed for the case that all units receive the
same number of connections. The critical analysis is ex-
tended to allow for variation in the number of incoming con-
nections to the processing units. Statistical specification of
the network models is completed in Secs. IV and V, with the
introduction of an algorithm for random deletion of connec-
tions (dilution of the network) and with the selection of four
different probability density distributions governing the
strengths of surviving connections. For each of the selected
distributions, results are obtained for the critical mean con-
nectivity, which defines the boundary between the chaotic
and frozen dynamical domains and hence decides the relative
stability of the competing models. Section VI is devoted to
an interpretation of these results (which favor the power-law
distribution), to a comparison of our findings with those of
somewhat related theoretical studies, and to a brief discus-
sion the roles of synapse elimination (dilution of network
connections) in neurobiology and neural modeling.

II. RANDOMLY CONNECTED THRESHOLD MODELS

The models to be studied here belong to the class of ran-
domly assembled threshold networks [18,19]. A given net-
work is made up of N interacting units i that occupy one of
two states. In the most common examples, such units may
represent Ising spins or McCulloch-Pitts “on-off” neurons.
Thus, we introduce for each unit a binary state variable
0,€{-1,+1}, with values —1 and +1 corresponding, respec-
tively, to spin up and spin down in the Ising case or to “fir-
ing” and “not firing” in the case of impoverished neurons.
The dynamical state of the system as a whole is formed by
concatenation of the individual state variables, o
={oy- -0, - oy}. There exists a pattern of directed connec-
tions between the units, forming a network in which units
stimulate one another, potentiating state changes (analogous
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to “spin flips”). More specifically, an arbitrary unit i receives
inputs (connections) from k; other units of the system, with
I=k;=N-1 (thus excluding self-interaction). It is conve-
nient to introduce an N X N connection matrix (c;;), such that
element c;; vanishes if i receives no connection from unit j
and otherwise measures the strength or “weight” of the con-
nection or coupling from j to i (j— i). The number of incom-
ing (outgoing) connections to (from) a given unit i is com-
monly referred to as its in-degree (out-degree).

The time evolution of the system obeys a linear threshold
rule, the states of the individual units being updated in par-
allel in discrete time according to

o(t+1) =sgn[2 ey, (1) +h]. (1)
J

Thus, for specified connection strengths ¢;; and threshold
(=) or bias (+) parameter &, the state of unit i at the next
time-step 7+ 1 depends only on the binary state values of its
input units at the previous time step z. (We shall assume
uniform thresholds; i.e., the parameter /% is taken the same for
all units.) The stimuli c;0; from the input units of i are
superposed linearly before executing the threshold operation.
In the spin example, the quantity in square brackets in Eq.
(1) may be interpreted as the “local field” acting on unit i,
due to interactions with the other units j and due to an ex-
ternal field represented by /4. It should be stressed that in
general the connection matrix (c;;) is not symmetric. In other
words, the action of unit j on unit i is generally different
from the action of i on j. Moreover, the nonvanishing c;; can
take on positive or negative values, corresponding to the “ex-
citatory” or “inhibitory” effect of unit j on unit i.

As described, a model of the kind we have selected for
study may be viewed as a complex network (e.g., a neural
network) evolving synchronously in time under a linear
threshold dynamics (where “linear” refers to linear superpo-
sition of inputs prior to application of the threshold nonlin-
earity). Alternatively, the model may be viewed as a finite-
state sequential machine, an automaton whose evolution is
governed by linearly separable Boolean functions. From the
former perspective, the original Hopfield network [3], de-
signed to operate as a content-addressable memory, is a fully
connected linear threshold model, but differs from that de-
fined above in implementing an asynchronous, sequential up-
date and imposing symmetrical couplings c;;. The parallel-
update (or synchronous) threshold model considered here has
earlier antecedents [1,2].

The latter—Boolean network—perspective establishes a
link with a seminal model introduced by Kauffman [4,5]
nearly four decades ago to study the complex genetic regu-
latory system that guides cell differentiation in embryonic
development. Although his initial studies were limited to low
connectivity, the Kauffman model allows for all possible
multicell interactions in a discrete logical sense: Units are
updated in parallel, with the state of each unit at time 7+1
being determined by a Boolean function of the states of its
input units at time ¢. The logical function assigned to and
implemented by a given unit is chosen randomly from the
full set of Boolean functions. Restriction to the subclass of
Boolean functions that are linearly separable allows for spe-
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cialization to the threshold dynamics specified in Eq. (1).

As already suggested by the above description, the names
of the elements comprising these network models are often
tied to the scientific or real-world application envisioned.
Thus, depending on problem domain,

unit = node = point = vertex = site = spin = neuron = gene,
etc., and
connection = input/output = link = edge = bond = coupling
= axon/synapse = interaction,

etc.

III. DYNAMICAL BEHAVIOR: “FROZEN” VERSUS
“CHAOTIC”

The bivalence of the Ising (or Boolean) variables assigned
to the N units of the model means that there exist only 2V
different configurations in the state space of the network
treated as a dynamical system. Consequently, the update rule
(1) will inevitably lead the system into an attractor—a fixed
point or a limit cycle—after a transient phase that is neces-
sarily of finite (or zero) duration. This is obviously true for
any deterministic sequential machine with a finite number of
states, regardless of the specific update algorithm. The rep-
ertoire of long-term behaviors available to a given model, as
represented by its characteristic set of attractors (also called
“cyclic modes”), is a key determinant of the model’s perfor-
mance in either natural or technological contexts. For ex-
ample, some aspects of fixed-point and cycling behaviors,
often interpreted as the response of the network to stimuli
expressed as initial conditions, may be of genetic, immuno-
logical, or neurocomputational interest within biology. In
Kauffman’s evolutionary model for cell differentiation, the
total number of cyclic modes scales with the (highly limited)
number of different cell types in living organisms. In neural-
network models, fixed points and (relatively short) limit
cycles can be considered as model analogs of active short-
term memories or memory sequences [2,3,18]. Thus, when
investigating the properties of complex dynamical networks,
the acquisition of systematic information on long-term be-
havior assumes high priority, whether gained by analytical,
statistical, and numerical methods (or a combination).

In the thermodynamic limit of asymptotically large N,
useful statistical predictions for the dynamical motion corre-
sponding to Eq. (1) can be obtained analytically, provided
that the following holds true.

(i) The connectivity of the network (or equivalently its
topology or “wiring diagram”) is chosen randomly according
to a specified probability distribution @;, where k=k; is the
number of units j providing input to a generic unit i. In the
model to be considered here, the initial connectivity of the
network is such that all units i have the same in-degree k;
=K; i.e., every unit has exactly K incoming connections from
K distinct input units j chosen with uniform probability from
among the N—1 units other than i.

(ii) The network is sparsely connected (assured by K
~1In N or less)
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(iii) The weights c;; of input connections to the processing
units are chosen according to a given probability density
distribution p(c;;), with ¢;;E{-o, +}.

The characteristic dynamical behavior of the model, stem-
ming from Eq. (1), is conveniently analyzed in terms of the
normalized Hamming distance between two system states
aM(¢) and 0'?(¢), defined as

N
D= %VE 160 - (0| 2)

and thus lying on the interval [0,1]. This quantity is of piv-
otal importance, in that its long-term behavior determines
whether the system dynamics lies in the ordered or chaotic
phase. Suppose the initial distance D(r=0) has an infinitesi-
mally small value. In the ordered (or “frozen”) phase, the
distance either remains small or eventually disappears for
large times, whereas in the chaotic phase even an infinitesi-
mally small initial distance will evolve into a finite distance
~1 at large ¢. Here we use the term “chaotic,” even though a
deterministic finite-state sequential machine cannot strictly
exhibit chaos, since it is destined to enter a cyclic mode.
However, it is well known that if the number N of units is
asymptotically large, system trajectories can possess all of
the statistical hallmarks of chaotic motion [20].

It is fruitful, both conceptually and in terms of potential
applications, to characterize these two dynamical phases—
ordered and chaotic—by their response to local damage, as
produced by a reversal of the sign of one of the o; variables.
The ordered phase, representing a stable condition of the
system, is resistant to damage spreading: the wound does not
spread; i.e., it remains confined. In the chaotic phase, on the
other hand, the single-sign reversal may precipitate a cascade
of sign reversals, eventually affecting O(N) units; i.e., the
damage spreads exponentially throughout the system. Fol-
lowing closely the techniques of the annealed approximation
introduced by Derrida and co-workers [ 14—17], it was shown
by one of us [9-11] in the late 1980s that for a symmetric
distribution p(c;;)=p(—c;;) of the coupling coefficients, the
equation of motion for the distance D, can be written as a
one-dimensional mapping

SO (K
Dt+l=F(Dt)=l_Eas(s )Df(l—D,)K_s. (3)
s=0

For the threshold network models under study, the coeffi-
cients a, are given directly by the K-dimensional probability
integrals [11-13]

IEK)(p,h)=f f dxy -+ dxgp(xy) - -~ plxg)
X 0(g(xy,x9, ..., xXg,h)), (4)

where the x; E{-,} are random variables representing the
c;joj, 0 denotes the Heaviside step function, and
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gy, oo xg h) = [ + x4 -+ x) + (g + - +xg+ )]

X[= ey 420+ = +x) + (g + -0 +x5)]
= (X + o X+ )= (0 + 0 +xy)%

(5)

The integral ng)(p,h) specifies the probability that a sign
reversal of s randomly chosen input variables o; at time ¢
will not affect the output state of the system at the next time
step, 7+ 1. We note that for the trivial case s=0, the integral
IBK (p,h) is unity.

At this point, comparison with the Kauffman model is
instructive [12,21]. In this model it is customary to suppose
that all units have the same number K of inputs (same in-
degree), just as in the initial connectivity specified for our
model. The key distinction is that the processing units in the
Kauffman model have access to all of the 2" possible Bool-
ean state-transition functions. The present model, based on
linear threshold updating of the state, admits only the rela-
tively small subclass of linearly separable Boolean functions.

More specifically, in the Kauffman model, the state-
transition functions are chosen randomly from the full Bool-
ean class, but with a bias such that they yield O and 1 with
respective probabilities 1-p and p. Consequently, in this
model the coefficients a, introduced above, with the excep-
tion of ay=1, take the same value 2p(1-p), independently of
s. By contrast, for the linear threshold model [9], Eq. (1)
informs us that the coefficients a, depend on the in-degree s,
and indeed also on the chosen distribution p(c;;) of the con-
nection weights and the threshold parameter /.

Equation (3) has a trivial fixed point D=0 which is stable
if and only if the slope of F(D,) evaluated at D=0 satisfies

A k-] = 1. (6)
dD, | p=o

In general, this implies that a small initial distance decays
exponentially to zero. However, at the critical point corre-
sponding to equality in condition (6), the behavior is special,
with the distance tending logarithmically to zero [12]
(~1/1n 7). Inspection of the above condition shows that the
critical behavior is determined by the first-order coefficient
a; of expansion in Eq. (3), hence only on

1(1K)(P,h)=f f dx; - dxgp(x,) - - plxg)
XO((xy+ = +xg+h)?—x7). (7)

This is natural: if the fixed point D=0 is unstable against
single spin flips, it is unstable against multiple flips. On the
other hand, if the initial distance D, for Eq. (2) evolves to
a finite distance D™ # 0, all coefficients a, of the expansion in
Eq. (3)—i.e., all of the probability integrals Iik)(p,h)—are
needed for an analytic prediction of the corresponding non-
zero fixed points D*.

We will establish that the formal analysis based on the
annealed approximation may be extended not only to the
case in which the in-degree k; is variable, but also to cases in
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which the connection weights may be chosen from a con-
tinuum, as well as from a discrete set of values such as
{-1,0,+1}.

IV. VARIABLE CONNECTIVITY THROUGH DILUTION

Let us now consider in more depth an algorithm that (i)
introduces variable in-degrees through dilution of a previ-
ously constructed homogeneous network and also (ii) pro-
vides nontrivially for variable connection strengths.

First, we assemble (“wire up”) the network randomly, just
as before, such that each unit receives the same number K of
inputs. Second, we perform a random deletion of a fraction
1—{ of the i—j connections made in the first step. The in-
degree k of a given unit may now vary between 0 and K, and
the mean connectivity of the networks is

K=(K. (®)

Since the number N of units is asymptotically large, and
hence also the number NK of connections, and since K is
also to be considered large (but much smaller than N), the
in-degree distribution @, of the diluted network, while

strictly binomial, is effectively Poissonian with mean K.

In a final step, the strengths c;; of the surviving connec-
tions are chosen based on a symmetric distribution p(x)
(which we call the base-line distribution). The nonzero cou-
plings c;; are determined by sampling the distribution py(x)
with welght {. The pattern of connectivity and couplings
characterizing the ensemble of diluted networks is repre-
sented analytically by the probability density distribution

p(x) = Zpo(x) + (1 = ) &lx). )

Obviously, the in-degree distribution @, is unaffected by this
step and remains essentially Poissonian. Substituting the dis-
tribution (9) into the integral (7), we have, with a shift of the
summation index k—k+1,

K-1

O =(1-0+3 (K; : )gk“(l _ ORI (o ),

k=0
(10)
where I(lk”)(po,h) is given by Eq. (7) with p=p, and K re-

placed by 0=k=K-1. Inserting this result into relation (6)
for the case of equality, we obtain

[5 E( >§k<1 )K"v&“(po,h)]:l. (11)

For fixed parameters K and h, Eq. (11) now serves to deter-
mine the critical dilution 1-{¢. above which the system be-
longs to the stable, ordered phase. The corresponding critical

mean connectivity is then given by K,=/.K.

V. PUSHING THE ENVELOPE OF STABILITY

The algorithm we have introduced allows for gross con-
trol over the network’s connectivity, or topology, through the
choices made for the dilution parameter 1—{ and the connec-
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tivity parameter K (which becomes the maximum in-degree).
Furthermore, it allows for diversity of the connection
weights ¢;; through specification of the distribution of cou-
pling strengths assigned to the surviving connections.

Within the annealed approximation, we have shown ex-
plicitly how the boundary between the chaotic and ordered
regimes, and hence the extent of the stable regime, depends
on the assumed distribution p(x). More specifically in terms
of our statistical prescription for construction of the diluted
network with varying connection weights, we have shown
how the boundary between stability and instability depends
on the choice of the base-line distribution py(x), the dilution
parameter 1—¢, the connectivity parameter K, and the thresh-
old parameter .

Based on our results, it is in fact both practical and pos-
sible to gain useful theoretical insights by applying the an-
nealed approximation to the case in which the in-degree is
variable from one node (unit) to another (cf. Ref. [22]).
Moreover, our approach is also well suited to the treatment
of networks in which the nonzero connection strengths are
not restricted to a discrete set of values (as in Refs. [22,23]),
but instead may belong to a continuum. We shall now make
use of this flexibility to explore the relative stability against
chaos, or damage spreading, of the dynamics of random
threshold network models corresponding to different choices
of the base-line distribution py(x) entering Eq. (9). These
choices, all symmetrical under x — —x, include the following:
(i) the bivalent “Dirac” distribution

o) = 31801~ + 81+ (12)

(ii) a uniform probability density on the interval [-1,1],

pol) = 5 00001 - 600 (13

and (iii) the Gaussian distribution

1
—e (14)
N

po(x) =

To these we add (iv) a power-law distribution, given by

l1-«a

po(x) = ZW (15)

on —1 <x<1 and vanishing otherwise, with 0 <<a<1.

All four of these base-line distributions py(x) are properly
normalized, such that [ p(x)dx=1. (Although the power-
law distribution is singular at the origin, it is integrable.)
Moreover, all four choices of py(x) [and hence the overall
distribution p(x) of Eq. (9)] are even in the random variable
x, which means that we assume equal probability of excita-
tory or inhibitory connections. However, our current analysis
anticipates treatment of an arbitrary real-number threshold
parameter /.

Consider now the k-dimensional probability integrals
I(lk)(p,h) defined by Eq. (7) with K rewritten as k. These
integrals, with k running from 1 to K and py(x) substituted
for p(x), are needed to explicate the stability condition and
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determine the critical boundary in the dynamical phase dia-
gram of the diluted system through Eq. (11). For standard
probability density distributions py(x), these integrals may be
evaluated in closed form by making use of the recursion
relation

1{*po.h) = f dx po)1(pox +h).  (16)
which follows directly from the definition (7) of the prob-
ability integrals (with K—k+1).

For the first three base-line distributions listed above, the
following analytical expressions have been obtained by a
process of induction. The details of the derivations are
lengthy and tedious and will not be reproduced here; the
results of a more general analysis of the probability integrals
entering Hamming-distance dynamics will be published else-
where in a dedicated article.

(1) Bivalent Dirac distribution:

ng)(Po,h)=1—i< g ) (if k+h is even)
2\ (k + )12
=I(k=1.h) (if k+h is odd). (17)

Upon inserting this result into Eq. (24) below, we reproduce
a result derived by Rohlf and Bornholdt [22] using combina-
toric arguments.
(ii) Uniform density:
k

> -1k,

2k &

ng)(Po,h) = (18)

wherein the factor bearing the + subscript is evaluated as
given if h—1 is positive; otherwise, it is set equal to zero. The
coefficients c;‘ are then given by the two-dimensional recur-
sion relation

k+1 _ k k —
o =c—cl, ==k, ...

(19)
where ¢\ =—1 and c}=2. This result has been published

previously by one of us in Ref. [9].
(ii1) Gaussian distribution:

(o) =1- = f e-x2¢( L)dx, (20)
T J ik Vk—1
where ¢(x) is the error function. For 4=0, this formula re-
produces a result obtained by Derrida [16].

For the power-law distribution (15), the integrals
I(lk)(po,h) cannot be calculated analytically for arbitrary val-
ues of k. However, the required probability integrals for this
case can be evaluated numerically by a Monte Carlo algo-
rithm. Indeed, although the above analytical formulas are
available for calculation of the integrals 1{"(py,/) for the
other three distributions, the Monte Carlo technique is more
convenient for their numerical computation; accordingly, it
has been used in all cases to determine the data for Iﬁk)(po,h)
versus k plotted in Figs. 1 and 4, on which our evaluation of
critical mean connectivity is based.
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FIG. 1. Results for the probability integrals I(lk)(po,h=0) corre-
sponding to four different base-line probability density distributions
po(x), plotted versus in-degree index k. Key, reading from bottom to
top: Dotted curve with squares: bivalent Dirac distribution. Short-
dashed curve with stars: uniform distribution. Long-dashed curve

with crosses: Gaussian distribution. Solid curve with pluses: power-
law distribution with a=2/3.

Evaluation of the integrals I(lk)(po,h) simplifies consider-
ably for vanishing threshold parameter /4. All numerical re-
sults presented here refer to this case. Probability integrals
for the four base-line distributions are shown in Fig. 1 as
functions of the in-degree index k. Figure 2 collects plots of

the line of critical mean connectivity K, as a function of the
upper bound K on the in-degrees assigned to the units (iden-
tical with the initial uniform in-degree). The different curves
correspond to the four different choices (12)—(15) for the
base-line distribution py(x). The corresponding chaotic re-
gime lies above each curve. The lowest curve (least stable
case) gives K, for the bivalent Dirac distribution. With in-
creasing K, the critical mean connectivity slowly increases
toward an asymptotic value I?:C =1.848 87 (determined as de-

scribed below). The same general behavior is seen for the
other distributions examined. However, the curves for the

-
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FIG. 2. Critical mean connectivity K, as a function of connec-
tivity parameter K for four choices of the base-line probability den-
sity distribution pgy(x). Key, reading from bottom to top: Dotted
curve with squares: bivalent Dirac distribution. Short-dashed curve
with stars: uniform distribution. Long-dashed curve with crosses:
Gaussian distribution. Solid curve with pluses: power-law distribu-
tion with a=2/3.
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FIG. 3. Power-law density distribution py(x)=(1-a)/2|x|%,
plotted for a=2/3.

uniform and Gaussian choices show successively greater sta-
bility, with shrinking chaotic regimes and asymptotic values
of I?f =2.074 and 2.206, respectively. Note that the latter
critical value for the Gaussian choice has already been re-
ported in 1987 by Derrida (see Ref. [16]). Results are also
included for the power-law distribution (15) plotted in Fig. 3,
taking @=2/3 for the control parameter that is available for
this choice of distribution. In this case the asymptotic critical
mean connectivity is found to be K:=2.63, substantially
larger than the values attained for the other three distribu-
tions.

The asymptotic values quoted for K — o are easily calcu-
lated directly by eliminating ¢ in favor of the mean connec-

tivity K. Substituting /=K/K into Eq. (10), we have

— K-1
wp o [ K _(K-DY
A(AM—<1 K)*g%kuK—k—D!

e o\ K1k
X(;) (1—g) 15 (po, )

Ry & &-1 KK
=G_E)+%{m>rwwwwEﬁ

[5G e

(21)

In the thermodynamic limit where K~In N and N— e, the
factor in the second set of square brackets defines the expo-
nential ¢ X, while the those in the first and third reduce to
unity. Reduction of the latter factors proceeds as follows.
The first can be rewritten as

(K-1-k+1)(K-1-k+2)---(K-1-k+k)K™*.
(22)
The factorial k! appearing in the denominator of the sum
over k quenches the contributions from all k of size compa-

rable to K, so that in the limit K— o, expression (22) may be
replaced by K*K~*=1. For the factor in the third set of square
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brackets, we observe that K is necessarily a small number in
the region of the boundary between ordered and chaotic
phases, so that this factor reduces trivially to unity at asymp-
totically large K.

Thus we arrive at

— — K-1 —
K| K < K

19(p.h) = (1 - E) + K3 o). (23)
k=0 "+

One recognizes that the manipulations leading to this result
recapitulate steps made in deriving the approximation of a
Binomial distribution by a Poisson distribution. The critical

stability condition for K, corresponding to condition (11), but
for asymptotically large K, is now given by

_ _ KK
K(l —e K> Fl(lkﬂ)(Po,h)) =1, (24)
k=0 K

so that the critical value K, of K is determined by a nonlinear
algebraic equation. The series appearing in the left-hand side
of Eq. (24) converges rapidly.

The principal findings of this numerical investigation may
be summarized as follows. Of the probability density distri-
butions selected for comparison, the power-law choice, with
a=2/3, endows the system with the greatest stability or ro-
bustness, in the sense of producing the highest critical mean

connectivity K, for a given upper bound K on the in-degree
assigned to the units. Moreover, the stability associated with
the power-law distribution can be tuned. As « is decreased,
the chaotic phase expands at the expense of the frozen phase.
The limiting distribution for & — 0 is equivalent to the uni-

form choice (13) and accordingly yields the same K, for
given K. On the other hand, the stable domain can be ex-
panded without limit as the parameter « is increased toward
its upper limit of unity. While stability can certainly be en-
hanced in this way, it eventually proves counterproductive:
For a«— 1, the distribution becomes a spike at x=0, all the
couplings c;; are zero, and the network is completely discon-
nected.

It is well to emphasize that the power-law distribution
(15) stands apart from the other three distribution functions
considered in that it contains the adjustable parameter a and
hence represents a family of distributions rather than a single
choice. One might similarly generalize the Gaussian choice
(14) to a family of properly normalized Gaussians,

1
s (25)

V3

However, it is readily shown that the probability integrals
I(lk)(po,h) for this distribution are independent of the param-
eter B and hence invariant under this generalization.
Figures 4 and 5 provide supplementary results for prob-
ability integrals and critical mean connectivity values asso-
ciated with the power-law distribution. Results are shown for
parameter values a=0,1/6,2/6,3/6 as well as 2/3. (The
required numerical computations for larger a values become
excessively demanding, especially at large values of K.)

Po(x) =
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FIG. 4. Results for the probability integrals I(lk)(po,h=0), plotted
versus in-degree index k for several values of the power « specify-
ing the power-law distribution (15). From bottom to top, the curves
correspond to a=0, 1/6, 2/6, 3/6, and 4/6.

VI. DISCUSSION

We begin the discussion of the meaning, implications, and
relationships of the results of Sec. V with a simple qualita-
tive explanation of the differing degrees of stability endowed
by the different choices of base-line connection-strength dis-
tributions studied numerically. We then relate our findings,
insofar as possible, to the results of other studies of the dy-
namical stability of randomly assembled threshold networks,
as measured by their susceptibility to damage spreading.
Since the formation of the network models studied here in-
volves pruning of connections initially present, we call atten-
tion to situations in neurobiology and neural modeling where
processes of synaptic elimination may play important roles.

A. Qualitative interpretation of principal findings

It is well known from earlier work (e.g., Ref. [11]) that in
the absence of dilution ({=1), (i) a smaller value of the con-
nectivity parameter K favors stability and disfavors chaos
and (ii) no disordered phase can occur for K<<3. It is also
known that at a given, finite value of the dilution (0<1-¢
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FIG. 5. Critical mean connectivity K, as a function of connec-
tivity parameter K for several values of the power « specifying the
power-law distribution (15). From bottom to top, the curves corre-
spond to a=0, 1/6, 2/6, 3/6, and 4/6.
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<1), property (i) remains true, but fluctuations of the in-
degrees assigned to the units (which can range from 0 to K)

permit a chaotic region to exist for mean connectivity K
=(k) less than 3. We note, inter alia, that the mean connec-
tivity always exists as a meaningful quantity in our models.

Next we remark that although in principle the base-line
distribution py(x) can produce further dilution beyond the
fraction 1-{ by assigning zero strength to some of the re-
maining connections, in practice the effect will be of mea-
sure zero for the distribution functions we have employed.
On the other hand, to the extent that a given choice of pgy(x)
assigns small weights to a significant fraction of the surviv-
ing links, the effectiveness of these links in spreading dam-
age will be correspondingly reduced. Considered from the
viewpoint of topology, the mean connectivity is decreased,
with a corresponding retreat of the chaotic domain in the
dynamical phase diagram. Considered from the viewpoint of
connection strengths (which in fact embraces the topology),
the mean absolute strength |¢| of connections that survive
pruning is correspondingly weakened. Either perspective of-
fers some qualitative insight into the ordering of stability for
the four distributions studied in Sec. V, as quantified in Figs.
2 and 5, but it must be expected that significant features of
the problem are missed in focusing on such mean values, as
indicated in the next paragraph.

For the binary Dirac distribution (12), the weights of the
existing connections all have the same absolute value [c| of
unity. For the uniform distribution (13), the mean absolute
value |c] is reduced to 1/2. For the Gaussian distribution (14),
|c| is further suppressed, the connection strengths close to
zero having higher probability. The power-law case is more
interesting. As the parameter a runs through the range (0,1),
the power law yields a mean absolute connection weight that
interpolates smoothly between limiting values of 1/2 (the
same as for the uniform distribution) and 0, as «—0 and
a— 1, respectively. The mean value of |c| can also be driven
to zero by adopting the parametrized Gaussian distribution
(25) and taking the width parameter B to zero. However, in
contrast to the behavior found for the power-law distribution
under variation of the parameter «, the Gaussian choice (25)
has the property that the dynamical stability of the network
remains unaffected as 3 is varied, the critical line being in-
dependent of .

B. Relationships to prior work

Three prior investigations [22-24] of the competition be-
tween chaos and order in complex networks are sufficiently
recent and relevant to warrant comparison with our analysis.
However, these earlier studies differ from the present work in
their focus on the effects of network topology, examining the
dynamical implications of variable in-degree k correspond-
ing to an assumed distribution @, but not exploring the ef-
fects of variable magnitudes of the nonzero connection
strengths. References [22,23] address the issues of stability
and damage spreading within the model class of randomly
assembled threshold networks, while Ref. [24] determines
conditions for dynamical robustness of random Boolean net-
works.
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Although the models studied in Refs. [22,23] are similar
to those we have considered, there are some crucial differ-
ences. In the cited works, the coupling strengths c;; are re-
stricted to the discrete set of values {—1,0,+1} and the val-
ues —1,+1 are assigned with equal probabilities. The
fraction of null connections (c;;=0) is not specified explic-
itly, but is constrained by specification of a mean connectiv-
ity (mean in-degree) parameter K and by other assumptions
on the in-degree distribution. Our more general description
allows the couplings c;; to take on any real values. Within the
framework of our models, formulated in terms of the prob-
ability density distribution p(x) of connection strengths, the
models of Refs. [22,23] correspond to Eq. (9) with the biva-
lent Dirac choice (12) taken for py(x). The quantities corre-
sponding to the integrals I(lk)(p,h) of our treatment [denoted
by p,(k) in Refs. [22,23]] are determined by combinatoric
arguments that have no practical extension to the more gen-
eral connection-strength probability density distributions
considered in our work.

In the models analyzed in Refs. [22,23], there is no upper
limit on the in-degree of a given unit, whereas in our models
the in-degree is bounded by the parameter K. This is an
important distinction. It implies that a useful comparison can
only be made by going to the thermodynamic limit for K
within the present approach [and, of course, only for the
bivalent Dirac choice of py(x)]. Thus, we may compare the
critical connectivity K.=1.849+0.001 determined in Ref.

[22] with the asymptotic mean connectivity K=1.848 87
found in Sec. V. It is not surprising that these values agree,
since they are in fact computed from the same formula, ob-
tained by substituting the bivalent Dirac distribution into the
integrals entering Eq. (24).

The work of Aldana and Cluzel [24] is of seminal signifi-
cance in demonstrating, for the iconic Kauffman model, that
a scale-free (power-law) choice @;~k~Y for the in-degree
distribution can yield greatly enhanced robustness relative to
that of networks with random topology—i.e., wired up as in
our models prior to dilution. Robustness is defined as the
fraction of the range [0,1] of the bias parameter p over which
networks display robust (i.e., ordered, not chaotic) behavior.

In a sense this finding is mirrored in our demonstration,
within the more restricted setting of linear threshold net-
works, that a power-law density distribution of (nonzero)
connection strengths can yield enhanced stability compared
to bivalent Dirac, uniform, and Gaussian forms. The compe-
tition between ordered and chaotic phases can be tuned by
adjusting the index « specifying the power-law distribution
(15). In both model studies, the introduction of heterogeneity
into the structural characterization of a complex network
model through a power-law distribution provides for greater
stability than can be achieved with a more homogeneous
design.

However, we should emphasize that despite this common-
ality, the correspondence is indirect, and essential distinc-
tions must again be drawn. The first of these involves the
nature of the parameter domains (the dynamical phase dia-
grams) being explored. The dynamical behavior of the Bool-
ean models was investigated by Aldana and Cluzel either in

the phase plane (p,K) (appropriate to the random topology)
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or in the phase plane (p,7y) (appropriate for the scale-free
topology). On the other hand, our work is concerned with the
dynamical behavior of threshold networks in the phase plane

(K.,K), or equivalently (£,K), for various choices of the
connection-strength distribution. The parameter { has no
counterpart in the Boolean models, so the two studies actu-
ally address different aspects of the stability. A more apt
comparison could be made if the dynamics of the threshold
network model were examined for a range of values of the
threshold parameter %, which, like p in the Boolean case,
provides a single parameter measuring the probability that an
arbitrary unit ;i will become active, g;=+ 1. From prior com-
parisons of Boolean and threshold models (see, e.g., Ref.
[12]), one may expect corresponding behavior. Specifically,
one may expect greater robustness of performance in terms
of an expansion of the range of & over which the threshold-
network system displays ordered behavior, when a scale-free
in-degree distribution @, is used in place of the conventional
homogeneous random topology. [We note here that the prob-
ability integrals Ill‘(p,h) increase monotonically with the
threshold parameter h.]

The second important distinction stems from the fact that
the power-law, or “scale-free,” form plays a different role in
the present work than it does in the study of Aldana and
Cluzel or the investigations of Refs. [22,23]. These latter
analyses follow the trend of the majority of current studies of
complex networks, in which topological considerations are
paramount. In particular, Albert and Barabdsi [8] have col-
lected empirical evidence demonstrating that in many large
networks observed in physical, biological, economic, and so-
cial systems, the degree distribution @, (or the in-degree and
out-degree distributions if they differ) obeys a power law at
large k. Furthermore, they have shown that such a behavior
may result from regular growth of the number of nodes
(units), followed by preferential attachment to nodes of high
degree. Based on the work of Aldana and Cluzel for the
Kauffman model, one may reasonably expect that also in the
case of threshold networks, the choice of an (in-) degree
distribution with a power-law tail will promote stability of
dynamical operation. A natural way to introduce the next
layer of complexity is to assign strengths of various magni-
tudes to the nonzero connections. That is what we have done,
while diluting an initial topology (wiring diagram) that is
homogeneously random.

It should also be noted that the algorithm for network
construction we have adopted is based on a different view of
the evolution of networks than that of Albert and Barabasi;
we implement pruning of connections rather than growth,
while allowing for variance of connection strengths. To reit-
erate: First, all possible connections between the N process-
ing units are made, and links are then deleted at random until
a fraction ¢ of the original NK links is left. These {NK non-
zero connections are assigned positive and negative strengths
symmetrically according to the power-law (or scale-free) dis-
tribution (15). We have found that for sufficiently large val-
ues of «, the inhomogeneous distribution of connection
strengths arising from this algorithm leads to greater stability
than can be attained with more homogeneous distributions
and that the unstable chaotic phase shrinks indefinitely as the
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power « approaches its upper bound of unity. To explain the
relative stabilities associated with the four choices (12)—(15),
it was argued that in determining the boundary between or-
dered and chaotic phases, the connections having very small
absolute strength are equivalent to an additional fraction of
zero connections. In general, a reduction in the mean number
of input connections per unit promotes stability; however, the
details of the phase diagram will also depend both on the
variance in the in-degree and the variance in the absolute
connection strength. It is also worth noting (again) that push-
ing toward the limit «— 1 may not be advantageous in prac-
tice, since its effect is ultimately to trim out all connections.

The importance of the in-degree variance for network be-
havior was stressed in Ref. [24]. Although the mean connec-

tivity K is a meaningful guide in the case of the homoge-
neous random topology, this quantity has little meaning for
the scale-free topology. In the former case, the degree distri-

bution becomes Poissonian for large K, and hence the vari-

ance coincides with K. In the latter case, however, the vari-
ance is divergent for y=3 in the relevant thermodynamic
limit, so that the mean connectivity (mean in-degree) is no
longer a useful concept. We point out that in the models

studied here, K remains meaningful, since by construction it
is bounded by K, which is either finite or at worst O(In N)
for large N.

Because of the differing roles of the power-law distribu-
tion in the present work and that of Refs. [8,22-24], it is to
be expected that the interesting ranges of the power-law ex-
ponent are different. This is highlighted by our use of the
symbol « for the power-law index in Eq. (15) rather than the
more conventional notation [8,23,24] . In their studies of
Boolean nets, Aldana and Cluzel found that scale-free topol-
ogy with y>2.5 yields robust dynamics for any value of p,
with the transition from order to chaos occurring when the y
value is reduced to y=2, depending mildly on p. These au-
thors cite empirical evidence that real intracellular networks
are characterized by vy values in the range [2,2.5] they predict
for the transition region. In the threshold network models
considered here, the values « are restricted to the range (0,1)
to ensure normalization of the distribution (15).

In concluding this discussion, we would like to emphasize
that when the scale-free form ¢, ~ k™7 is employed as a rep-
resentation of the degree distribution [8,22-24], what is im-
portant is its behavior at large k—i.e., its slow falloff com-
pared, say, to a Poisson or Gaussian distribution. Indeed, its
behavior at very low k, especially k=0, is clearly not mean-
ingful in this application. (Accordingly, Nakamura [23] starts
the “scale-free” power-law form at k=1; he also imposes a
cutoff at large k.) On the other hand, when the power-law
form is used to represent the probability density distribution
of connection strengths, what is most important is its behav-
ior at low |cij , as argued above. In neither case is one truly
dealing with a scale-free distribution, as some scale must
intervene physically at either low or high values of the rel-
evant variable (or both).

C. Synaptic deletion in neurobiology and neural modeling

Finally, let us turn to the possible biological or practical
significance of the findings of the present study with respect
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to the dynamical stability of threshold networks. One ques-
tion to be dealt with is the relevance of the class of network
models we have investigated to real-world complex
networks—specifically, the relevance of the algorithm of ran-
dom deletion of connections that underlies the creation of
these models.

It is a well-known phenomenon in brain development that
an early phase of overproduction of synaptic connections is
followed by massive pruning of synapses [25-32]. Evidence
for synaptic elimination is found, for example, in the visual
cortex, association areas, and the voluntary motor area, as
well as at neuromuscular junctions. In humans, for example,
synaptic density increases linearly during fetal and postnatal
development, reaching a maximum around age 2-3 and re-
maining stable at 150%—-200% adult levels until about age 5.
At that point a process of vigorous synaptic pruning begins,
synapses being eliminated until the density stabilizes at adult
levels around the time of puberty [37].

The processes of synaptic reorganization that take place in
learning and development are largely unknown. In the ab-
sence of data showing correlations between localized neural
activity and persistence or extinction of synaptic connec-
tions, it is reasonable to adopt a prescription of random de-
letion, as in our model. On the other hand, if synaptic reor-
ganization, including elimination of connections, is to have
some utility for an organism or in a device, the process must
involve a systematic component, for which empirical evi-
dence does exist in some cases.

One such case may be established in observation and
analysis of the developmental stages of the frog neuromus-
cular junction [33]. In early stages, each muscle fiber is in-
nervated by multiple motor neurons, but after development is
complete each fiber is controlled by a single motor axon.
During development, it is observed that active neurons main-
tain small motor units (in terms of muscle fibers controlled),
whereas other evidence suggests that activity drives compe-
tition at the neuromuscular junction. The paradox created by
these findings has been resolved in a dynamical model [34]
of synaptic competition that takes into account the global
redistribution of synaptic resources as local competition
eliminates axonal connections at individual neuromuscular
junctions, while providing an explanation of the size prin-
ciple [35] of muscle fiber recruitment in the adult system.

It may be expected that the tasks of memory storage and
retrieval call for deletion strategies rather different from
those that are optimal for muscular action. In this respect we
note that there has been significant theoretical work on the
effect of synapse elimination on capacity measures in asso-
ciative memory models [36-38]. Sompolinsky [36] and later
Chechik, Meilijson, and Ruppin [37] have argued that when
metabolic resources are not constrained, no deletion strategy
can yield better performance than the intact network. How-
ever, the latter authors have shown that when metabolic en-
ergy resources are limited in terms of the number of synapses
or total absolute synaptic strength, memory performance
(measured by patterns stored per synapse) is maximized if
synapses are first overproduced and then pruned by an opti-
mal minimal-value deletion strategy (trimming out all syn-
apses of magnitude smaller than a given value). More re-
cently, Mimura, Kimoto, and Okada [38] have studied the
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effect on synapse efficiency of different pruning algorithms:
namely random deletion, synapse clipping, minimal-value
deletion, and compressed deletion. In their work, synapse
efficiency is defined as the storage capacity normalized by
the “connection rate” (a single number representing the out-
degree).

These disparate examples suggest that different realiza-
tions of systematic synapse deletion will be favored in dif-
ferent neurobiological settings. Accordingly, generic studies
of networks subjected to random deletion of connections,
such as that presented here, will remain of value in providing
a base-line case.

D. Directions for future work

The present study of the dynamical stability of threshold
networks has been based on a rather simple topology-
generating algorithm and several options for subsequent
probabilistic determination of the strengths of surviving con-
nections. The topology-generating algorithm, which involves
random dilution of connections after first wiring up the net-
work with uniform in-degree K, has been motivated in part
by the evolution of synaptic connections in early neural de-
velopment in vertebrates. The critical dynamics of the net-
work models thus created has been explored by following the
evolution of the Hamming distance between network replicas
within the annealed approximation.

Further work along similar lines may serve to remove
some of the limitations of the present treatment and/or ex-
plore alternatives to the connection-pruning scenario. Natu-
rally there are many directions in which one could proceed
toward a more realistic description, depending on the spe-
cific, real-world application that is envisioned. Here we men-
tion three projects, one of which is currently in progress.

(i) In the models studied here, the processes of topology
generation (characterized by the final in-degree distribution
©,) and connection-weight assignment [characterized by the
probability density py(x)] are uncorrelated. A more realistic
description will require the introduction of correlations
suited to the anticipated application. For example, in the case
of a neural network, one could argue (at least if resource
constraints on synaptic enhancement are ignored) that con-
nections with weak weights should have a higher probability
of vanishing. This could be enforced in the present frame-
work by implementing a final dilution step to trim out the
weak links.

(ii) In the work reported here, we have studied the relative
dynamical stability of network models for different choices
of the probability density py(x) of the strengths of connec-
tions, the in-degree distribution being fixed and essentially
Poisonnian. To gain a more complete understanding of the
network properties contributing to stability, a complementary
study should be performed in which the in-degree distribu-
tion @, is varied at fixed py(x), for each choice of py(x)
considered in the present work. Preliminary results from
such a study, in which Poisson, exponential, and power-law
distributions are considered for @;, point to a clear advantage
for the power-law form in promoting stability. This finding is
what could be expected from the qualitative argument for the
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favorability of the power-law form given in Sec. VI A and
from the discussion of the Boolean-network studies of Al-
dana and Cluzel [24] in Sec. VI B.

(iii) The topology-generating algorithm we have em-
ployed features dilution of connections in a preformed net-
work. A mirror-image scenario, in which pruning in replaced
by growth of new connections, is equally worthy of study
along the same lines, as is a scenario in which connections
are grown “from a blank slate.” In either of these alternative
scenarios, overt attention to resource constraints may be nec-
essary, depending on the application.
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APPENDIX

The use of one-dimensional mappings of the kind (3) to
update the time evolution of the Hamming distance between
two replicas [(1) and (2)] of a Boolean or neural network of
binary units dates from the pioneering work of Derrida and
co-workers [ 14—17] some two decades ago. Accordingly, it is
worthwhile to recapitulate briefly the basis of such distance
equations. In essence, but with certain elective modifications
to mesh with the current application, we follow the deriva-
tion presented by Derrida in Ref. [16].

First, there is the assumption of sparsely connectivity as
made in item (ii) of Sec. III. Under this assumption, the
Hamming-distance dynamics of the of the quenched model,
for which the coupling strengths c;; are randomly chosen at
the initial time and kept fixed thereafter, is reproduced by
that for the annealed model, in which the c;j are chosen
afresh at each time step in accordance with the probability
density p(c;;). Crucial for this equivalence [15,17] is the fact
that, at any finite time, the states o; of units j extending
inputs to units i are uncorrelated for almost all i. Second, in
constructing the update rule, it is helpful to note that that the
Hamming distance D, is the fraction of units i such that
Ugl)(l) #* ng)(t).

In obtaining the specific form (3) used in our study, it has
been assumed that all units have the same in-degree K. The
K distinct units providing input to a given unit i are chosen
randomly with equal probability from among the remaining
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units j #i. For any such choice, the probability that s of the
units / will have states that differ in the two replicas—i.e.,
0,(-')(t) # o-ﬁ”(t)—and that the other K—s units have coinci-
dent states at time ¢, is determined by simple combinatorics
as

K
(S )Df(l -D)*. (A1)
More generally, the pattern of unit in-degrees will be ex-
pressed by a probability distribution. In Derrida’s derivation,
this is taken as a Poisson density, and a sum is performed
over K=1,...,% with a weight factor KX exp(-K)/(K-1)!.
Now consider the net input or “local field” h,(¢) felt by
generic unit 7 at time ¢, given by the quantity in square brack-
ets in Eq. (1). The local fields corresponding to the two rep-
licas are conveniently written as

0 =2 ol )+ h=urv+h,
> €y

(A2)

W20 =2 cjoP () +h=u-v+h.

J
We observe that u and v are random variables, since they
contain sums of random variables distributed according
to the assumed probability density distribution p(x) (with
xE{-o, +o0}). For s running between 0 and K, denote by a;
the probability that the choices of these random variables
will not lead to opposite signs of O'El)(l+ 1) and 0'52)(t+ 1) for
exactly s units i. Assembly of the equation of motion of the
Hamming distance is completed by appending the probabil-
ity factor a, to the combinatoric factor (A1) and summing
over s.

The first term on the right-hand side of Eq. (3) asserts unit
probability that 0',(-1)(t+ 1) and 0'52)(t+ 1) have different signs
for all N units i. The terms in the sum over s correct this
overestimate for the specific events of stochastic updating
within the annealed approximation carried out in the thermo-
dynamic limit.

In the main text of this article, the coefficients a; have
been renamed as IﬁK)(p, h) to reflect the fact that in our analy-
sis, the equation of motion for D, is viewed from a somewhat
different perspective than that described above. Rather than
following the Hamming distance D, between two replicas
over some extended period, we focus on the effect on D, over
one time step, caused by any number s of spin flips o;()
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— —0;(f)—as is required in an analysis of the stability of the
fixed point D,=D*=0 and thus for a determination of the
critical boundary between ordered and chaotic behavior. We
hasten to add that although Egs. (3) and (4) with aS=I§K) take
account of all possible spin flips, the issue of stability is
determined by the single integral I(lK) through the condition
(6) and the dynamical phase boundary through Eq. (11). We
also note that at the fixed point D*=0, the leading term 1 on
the right-hand side of Eq. (3) is canceled by the s=0 term,
while all higher terms in the sum over s vanish as some
power of D*. [In fact, cancellation of the 1 term may be
demonstrated straightforwardly for arbitrary D,, through ma-
nipulation of the double sum in Egs. (A3) and (A4) below.]

Since the late 1980s, distance-evolution equations resem-
bling Eq. (3) have been employed to describe dynamical
phases and associated critical conditions in a number of con-
texts. The fairly recent studies of Refs. [39,40] are typical,
the first being concerned with canalizing Kauffman networks
and the second with sociophysics models of opinion dynam-
ics. In these studies, as well as in Derrida’s original applica-
tion to the dynamical phase transition from ordered to disor-
der behavior in spin glasses [16] and Kiirten’s early
explorations [10,11] of the analogous phenomenon in neural-
network models, the sum on the s index begins with s=1,
rather than s=0 as in Eq. (3), and the leading term of unity
appearing in Eq. (3) is absent. These differences stem from a
contrary interpretation of the coefficient of the combinatoric
factor (A1) as the probability that the choices made for the
random variables # and v will lead to opposite signs for
0'51)(t+ 1) and 0'52)(t+ 1) for exactly s of the units i. The spe-
cific form of the equations adopted in Refs. [10,11], written
in the notation of the present work, is

K K
D=2 (- 1)"“( )akDf, (A3)
k=1 k
with
, k
a=1+2 (- 1)‘<S )lﬁ’“, (A4)
s=1

where I'® is the same integral as defined in Eq. (4).

Complementary and equivalent formulations can obvi-
ously be developed, in the annealed approximation, for the
time evolution of the overlap O,=1-D, of the states of two
replicas.
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